

Reducing Carbon Footprint with High Performance Steel - Concrete Composite Construction

Dr. Chiew Sing-Ping Professor of Civil Engineering Cluster Director (Engineering) SINGAPORE INSTITUTE OF TECHNOLOGY 17 November 2022

SingaporeTech.edu.sg

Sustainability in the Built Environment

Minimize the Consequence of Climate Change

The Paris Agreement sets a goal to limit global average temperature increase to 'well below 2°C above preindustrial levels' and to 'pursue efforts' to limit it to 1.5°C.

- Greenhouse gas removal
- Rapid decrease in carbon emissions

Southeast Asia is on the frontlines of efforts to counter climate change and its impacts.

- mean temperature increased by 0.1 to 0.3 °C per decade between 1951 and 2000
- rainfall trended downward from 1960 to 2000
- sea levels have risen 1 to 3 mm per year.
- Heat waves, droughts, floods, and tropical cyclones have also become more intense and frequent.

Source: 1. Yusuf, A., & Francisco, H. (2009). Climate change vulnerability mapping for Southeast Asia. 2. Environment Division of the ASEAN Secretariat 3. Venngage.com

What Has Changed from 17th Century to 21st Century?

1. Living quality shall not be sacrificed

Cooler Times: A depiction of Frost Fair at Temple Stairs on London's River Thames in 1684

https://www.museumoflondon.org.uk/discover/frost-fairs

2. Significant increase in emissions / person

Sustainability in the Built Environment

What is Embodied Carbon

Embodied Carbon

Manufacture, transport and installation of construction materials

Operational Carbon Building energy consumption

Source: Skanska

Reducing the Emissions Impact of New Builds

Source: McKinsey & Company

Demand reduction and circularity

- Design and process optimization
- Increasing closed-loop circularity for materials and components

Material decarbonization

• Reducing emissions during production of materials

> High performance material and construction

- Energy efficient materials (e.g., low-carbon materials, higher-performing materials)
- Modularization and off-site construction (e.g., lower consumption onsite and electrification of heavy equipment)

Towards 2030: What is Available?

Source: ICE version 1.6a Hammond G.P. and Jones C.I. 2008 Proc Instn Civil Engineers

Current Status

Concrete and **Steel** can not be replaced by alternatives in a short time

Solutions:

- 1. Use less and better materials
- 2. Improve structural efficiency
- 3. Use recycled materials

Structural Optimization

EC2: Rectangular stress distribution for RC beams subjected to bending

From EC2&EC3 to EC4: Enhanced Efficiency

High Performance Pre-Engineered Steel-Concrete Composite Beams (HPB) for Sustainable Construction

Positions of the P.N.A.

P.N.A in Concrete Slab (ULS)

The compressive resistance of concrete slab is:

$$N_{\rm c,f} = h_{\rm c} b_{\rm eff} \left(0.85 f_{\rm cd} \right)$$

The tensile resistance of steel beam is:

$$N_{\rm pl,a} = A_{\rm a} f_{\rm y} / \gamma_{\rm a}$$

Design Moment Resistance *M*_{*pl*,*Rd*}

The depth of the plastic neutral axis *z* measured from the upper surface of the slab is obtained from force equilibrium:

 $z = N_{pl,a} / (b_{eff} \cdot 0.85 f_{cd}) \quad < h_c$

Centroid of the pre-engineered section from the edge of the bottom flange: $h_s = \frac{\sum A_i y_i}{A_a} = \frac{b_{f1} t_{f1} (h_a - 0.5 t_{f1}) + h_w t_w (0.5 h_w + t_{f2}) + 0.5 b_{f2} t_{f2}^2}{A_a}$

The moment resistance is:

$$M_{pl,Rd} = N_{pl,a}(h_a - h_s + h_c + h_p - 0.5z)$$

or

$$M_{pl,Rd} = N_{pl,a}(h_a - h_s + h_c + h_p - \frac{N_{pl,a}}{N_{c,f}}\frac{h_c}{2})$$

Note: for composite cross-section with structural steel S420 or S460, where distance z between the plastic neutral axis and the extreme fibre of the concrete slab in compression exceeds 15% of the overall depth h of the member, the design resistance moment M_{Rd} should be taken as $\beta M_{pl,Rd}$ where β is a reduction factor.

Worked Example

The simply-supported composite beam with an effective cross-section shown in the figure is subjected to an ultimate factored design uniformly distributed action of 40 kN/m acting along its entire span of 12m. For simplicity, assume full shear connection and ignore self-weight.

The mid-span design bending moment is:

$$M_{Ed} = \frac{qL^2}{8} = 40 \times \frac{12^2}{8} = 720 \ kNm$$

Concrete slab resistance and neutral axis

Conventional UB design

Effective width of compression flange of the composite beam

 $b_{eff} = 2000 \ mm$ Compression resistance of the concrete slab $N_{c,f} = h_c b_{eff} (0.85 f_{cd}) = 5100 \ kN$

Tensile resistance of the steel section $N_{pl,a} = A_a f_{vd} = 2351.25 \ kN$

If $N_{c,f} > N_{pl,a}$, PNAis in concrete slab If $N_{c,f} < N_{pl,a}$, PNA is in the flange of steel beam If $N_{pl,a} - N_{c,f} > 2b_f t_f f_{yd}$, PNA in the web of steel beam

Check position of the plastic N.A. v.s. Design the position of the plastic N.A.

Pre-engineered S460 section design

Effective width of compression flange of the composite beam

 $b_{eff} = 2000 \ mm$ Compression resistance of the concrete slab $N_{c,f} = h_c b_{eff} (0.85 f_{cd}) = 5100 \ kN$

Design the pre-engineered section $z = N_{pl,a}/(b_{eff} \cdot 0.85f_{cd}) < h_c \text{ and } z < 0.15h$

Section properties

Conventional UB design

457×191 UB67 Grade S275

Pre-engineered S460 section design

S460 design:

Bending resistance

Conventional UB design

$$z = \frac{N_{pl,a}}{b_{eff} \cdot 0.85 f_{cd}} = 69.2 \ mm < h_c = 150 \ mm$$

The moment resistance is:

$$M_{pl,Rd} = N_{pl,a}(0.5h_c + h_c - 0.5z)$$

= 2351.25 × $\frac{0.5 \times 453.4 + 150 - 0.5 \times 69.2}{1000}$

= $803 \ kNm > M_{Ed}$ Bending resistance of the composite section is adequate.

Pre-engineered S460 section design

$$z = \frac{N_{pl,a}}{b_{eff} \cdot 0.85 f_{cd}} = 60.4 \ mm < h_c$$

The moment resistance is: $M_{pl,Rd} = N_{pl,a} (h_a - h_s + h_c + h_p - 0.5z)$ $= 2054.4 \times \frac{(450 - 178.7 + 150 - 0.5 \times 60.4)}{1000}$ $= 804 \text{ kNm} > M_{Ed}$ Bending resistance of the composite section is

Bending resistance of the composite section is adequate.

Pre-engineered S460 section design v.s. Conventional UB design

 $M_{pl,Rd}$ + 0.71% Weight - 47.8%

Bending Moment Resistance vs. Weight of steel

Note: assuming a 150mm solid concrete slab, Grade C30/37, $b_{eff} = 2000 mm$

Case Study: Long Span Industrial Buildings

Live Load

• 15 kN/m²

Conventional design

- C355+C32/40
- MB-column: fixed joint
- MB-SB: pinned joint

High Performance Beam (S460M+C60/75)

BCA Green Mark 2021 Carbon Calculator

Concrete	Туре						
Concrete (Natural)							
Eco Concrete (15% Fly Ash Replacement)							
Eco Concrete (30% Fly Ash Replacement)							
Eco Concrete (25% GGBS Replacement)							
Eco Concrete (50% GGBS Replacement)							
Precast Concrete (Natural)							
Precast Eco Concrete (15%	5 Fly Ash Replacement)						
Precast Eco Concrete (30% Fly Ash Replacement)							
Precast Eco Concrete (259	% GGBS Replacement)						
Precast Eco Concrete (509	% GGBS Replacement)						
Glas	S						
Glass	6						
Stee							
Primary/Secor	ndary Steel						
Othe	rs						
Alumin	ium						
Timber							
Tiles	6						
Pain	t						
Bricks							
Waterproofing							
Carpe	et						
Copper							
Mineral	Wool						
Pape	r						
Plaste	er						
Plast	ic						
Seala	nt						
For Self-I	nputs						
Total							
Quant	it 24.00 kg						

- Estimate the total upfront carbon emissions of the project based on materials declared.
- Has a built-in database for equivalent CO2 (CO2e) for common materials

		For Su	per Sturcture - Mater	rial Details:					
Material / Grade	Quanity	Units	Source of product	Transport Emissions	Total Carbon (kgCO2e)				
Concrete (Breakdown into components)									
Admixture									
Admixture	1.00	kg	Thailand	0.020974057	1.69 kg CO2e				
Air entrainers	1.00	kg	Thailand	0.020974057	0.55 kg CO26				
Hardening Accelerators	1.00	kg	Thailand	0.020974057	2.30 kg CO2e				
Plasticisers and	1.00	kg	Thailand	0.020974057	1.90 kg CO2e				
Retarders	1.00	kg	Thailand	0.020974057	1.33 kg CO2e				
Set Accelerators	1.00	kg	Thailand	0.020974057	1.35 kg CO26				
Water Resisting	1.00	kg	Japan	0.069700071	2.74 kg CO26				
Cement									
Cement (OPC)	1.00	kg	Vietnam	0.025397566	0.94 kg CO26				
Fly Ash	1.00	kg	Vietnam	0.025397566	0.07 kg CO26				
Ground-Granulated	1.00	kg	Malaysia (west)	0.0622832	0.13 kg CO26				
Limestones	1.00	kg	Malaysia (west)	0.0622832	0.15 kg CO26				
Limestones Fines	1.00	kg	Malaysia (west)	0.0622832	0.14 kg CO26				
Coarse Aggregates									
egates_(RCA)	1.00	kg	Singapore	0.0047152	0.01 kg CO2				
Granite	1.00	kg	Myanmar	0.030087943	0.04 kg CO2				
Aggregates	1.00	kg	Myanmar	0.030087943	0.03 kg CO2				
Fine Aggregates									
Washed_Copper_Slag_(1.00	kg							
Sand	1.00	kg	Cambodia	0.019635821	0.02 kg CO26				
Water									
Water	1.00	m3			0.01 kg CO2				

Material + Transport Emissions

CO2 sequestration and utilization in concrete could further reduce the e-CO2

e-CO2 of Materials

Weight and Carbon Analysis for the 12mx12m Floor

ים 🏾 🗍 ח

25

875

			e-CO2 (kg/kg)	Weight (tons)	e-CO2 (tons)
	Conventional design	C32 (+2% rebar)	0.246	72.0	22.26
		S355 (SB)	2.89	10.1	29.13
		S355 (MB)	2.89	8.2	23.79
		Deck	2.53	1.6	4.01
		Total		91.9	79.19
	HPB design	C60 (+2% rebar)	0.263	46.8	15.20
		S460 (SB)	3.76	5.9	21.99
		S460 (MB)	3.76	3.5	13.22
		Deck	2.53	1.6	4.01
		Total		57.8	54.42
		Reduction		37.1%	31.3%

e-CO2 includes materials and transport

Concluding Remarks - How to achieve 40% reduction in embodied carbon by 2030?

Q1: How to achieve 40% reduction in embodied carbon by 2030?

The proposed HPB system achieved 30% reduction on embodied carbon and 35% reduction on self-weight for long-span industrial and commercial buildings from:

- Reduced amount of raw materials used, especially OPC
- Improved structural efficiency

Q2: How much additional cost are we willing to pay for higher sustainability and productivity?

