NOx emission control for Coke Oven

Application of Two-Staged combustion to the single-staged combustion chamber

Yang, Sung-Jae

Environment & Energy Department

posco

1. POSCO at a Glance

POSCO, the history of Korean steel industry built from literally NOTHING
Steel, fundamental material of national economy supporting other industries

• Air quality standards

			dards		lonon		
		2001~	2007~	USA	Japan	WHO	
NO ₂ (ppm)	1hour	0.15	0.10	-	-	0.105	
	24hour	0.08	0.06	-	0.04~ 0.06	-	
	Year	0.05	0.03	0.053	-	0.021	

Chimney emission standards

	O ₂ %	2010~2014	2015~
Sinter plant	15	220 ¹⁾ / 120 ²⁾	200 ¹⁾ / 120 ²⁾
Reheating furnace	11	200 ¹⁾ / 150 ²⁾	200 ¹⁾ / 150 ²⁾
Coke Oven	7	250	250/150 ³⁾
Power Generator	15	100 ⁴⁾ / 50 ⁵⁾	80/50/20 ⁶⁾

¹⁾ Built before 2007. Jan ²⁾ Built after 2007.Feb ³⁾ Built after 2007.Jan ⁴⁾ Built before 2001. Jun ⁵⁾ Built after 2001.Jul , ⁶⁾ built after 2017. Jan

Following the adoption of PM 2.5 standard which will be effective in 2015,

the government is going to regulate PM2.5 emissions from stacks

 \rightarrow NOx control is essential to reduce PM2.5

3. Coke Ovens at Pohang Works

Pohang works operates single stage combustion chamber Coke Oven

구분	#1 Coke plant			#2 Coke plat				#3 Coke plant		
Battery	1	2	3	4	5	6	7	8	9	10
Built year	1973	1976		1978		1981		1983	2009	
Combustion	stion Single staged combustion						Two staged			

4. Coke oven & NOx emission

Schematic diagram of Coke Oven combustion chamber

Steel Solution for Green Growth

5. NOx emission control techniques

5.3.12.2 Reduction of NO_x by primary measures

" waste gas recirculation: The lower O_2 and higher CO_2 concentrations reduce the flame temperature.

" staged air combustion: by adding the combustion air in several stages, combustion conditions become more moderate, and NO_X formation is reduced

 Iowering coking temperatures: A lower coking temperature requires a lower heating chamber temperature, which results in less NO_x formation.

For existing modern plants which have already incorporated low-NO_x techniques, such as staged air combustion and waste gas recirculation, NO_x concentrations of $322 - 414 \text{ mg/Nm}^3(150 \sim 200 \text{ ppm})$ at 5 % O₂ are reported.

For existing plants without process-integrated deNO_x measures, achievable levels for NOX are in the higher range up to 1783 g/t coke, with concentrations up to 1700 mg/Nm³(830ppm) at 5 % O₂.

5.3.12.3 Reduction of NO_x by secondary measures Description

 NOX emissions from coke oven firing are preferably minimized by process-integrated measures, but end-of-pipe techniques may also be applied. (applicable only to new plant)

Reference : EU Best Available Techniques (BAT) Reference Document for Iron and Steel Production 2012 March

- **5. NOx emission control techniques**
 - How to reduce NOx for the conventional Coke Oven
 - **C** Application of SCR ?
 - Only applicable to New Plant
 - Lowering Coking temperature ?
 - Decrease the Coke productivity
 - Installation of Staged air combustion ?
 - Need to restructure of Coke Oven (refractory)

5. NOx emission control techniques

 Concept diagram of two staged combustion using conventional Coke Oven

TRIZ tool was introduced to find out the solution

- Technical contradiction (temperature $\downarrow \Rightarrow$ quality \downarrow , temperature $\uparrow \Rightarrow$ quality \uparrow)
- Forty principles : Segmentation, Asymmetry õ

6. Pilot test at the #1 Coke Oven (19 combustion chambers)

Conditions for stable operation

① Determination of secondary combustion air flow rate

- Total air flow rate : 12,800Nm3/hr (3% O2, mixed gas calorific value 1000 Kcal/Nm3)
- Secondary air flow rate : 30% of total flow rate (benchmarked at the #10 Coke Oven) = 3,840Nm³/hr

② Measuring Scarping Blower flow rate

- [Scarping Blower Air flow rates]
- S/B : 5100Nm³/hr (Static pressure 260mmH₂O)
- Not appropriate since it had low static pressure (requires > 1,000 mmH₂O)

6. Pilot test at the #1 Coke Oven

③ Maintaining optimal Coke Oven Pressure

- Target : O2 contents 2-4%, Pressure : 1.5 . 3.5 mmH2O)
- Waste gas pressure was measured to adjust top pressure by adjusting damper

④ NOx Emission measurement

- CMS was installed on the chimney

7. Results of the test

Operation conditions were identified

- Secondary air flow rate : 4,100Nm^{3/}hr (32% of total air flow rate)
- Coke rate : 115%, Temperature : 1088 $^\circ\!\!{\rm C}$
- O_2 contents : 2-4%, Top pressure : 1.5 . 3.5 mmH₂O

Dramatic reduction of NOx

- 45% reduction (220ppm \rightarrow 120ppm)

8. Replication at the #8 Coke Oven (76 combustion chambers)

Replicated at the larger scale Coke Oven

- Period : 2010. Sep ~ 2011.Jan / Expenditure : 1.7 billion Won
- New air blower for supplying secondary combustion air

Cost analysis

Index		POSCO Technology	SCR
Investment cost	Billion Won	1.7	6.2
Operation cost	(approx. 0.9 M\$)	0.4	1.5

Much more economical than end-of-pipe technology

9. Conclusions

- POSCO successfully reduced 45% of NOx emission at the conventional Coke Oven by applying secondary combustion air through COG scarping pipe.
- NOx emission control technology was successfully replicated at the #8 coke oven plant and it is under installation in other Ovens at the Pohang works.
- POSCO continues its efforts on developing new environmental technology